Roll No.:

B028313(028)

B. Tech. (Third Semester) Examination, Nov.-Dec. 2021

(AICTE Scheme)

(Electronics & Telecommunication Engg. Branch)

DIGITAL SYSTEM DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) of all the questions is compulsory.

Part (a) carries 4 maks. Attempt any two from
from part (b), (c) and (d). Part (b), (c) and (d)
carries 8 marks each.

Unit-l

1. (a) Perform the following BCD addition:

8 4

(i) 26 + 13	
(ii) 579·6 + 636·8	
(b) Prove the following Boolean expression:	8
(i) $A + A'B = A + B$	
(ii) AB + A'C + BC = AB + A'C(c) Reduce the expression	
$f = \sum m(1, 5, 6, 12, 13, 14) + d(2, 4)$	
and implement the real minimal expression using universal logic.	8
(d) Realize the XOR function using:	
(i) AOI Logic,	
(ii) NAND Logic, and	
(iii) NOR Logic	8
Unit-II	
(a) Design Full Adder using two Half Adders.	4
(b) Design a 4-line-to-16-line Decoder using 3-line-to-	
8-line Decoder.	8

	(c) Implement the following logic function using an 8XI MUX	
	F(A, B, C, D) = AB' + BD + B'CD'	8
	(d) Design 4-bit BCD Adder and draw its logic diagram Unit-III	n. 8
3.		4
	(b) Convert J-K flip flop to S-R Flip flow.	8
	(c) Design a 4-bit universal shift register and draw the logic circuit diagram.	8
	(d) Design a Synchronous BCD Counter using J-K Flip flops.	8
,	Unit-IV	
4.	(a) Define Mealy model and Moore model.	4
	(b) What is a serial adder? Explain its working with the help of a state diagram and a state table.	8
	(c) Draw and explain the ASM chart for sequence detector.	8

2.

	(d)	Design 3-bit odd parity generator with the help of	
		a state diagram and a state table.	8
		Unit-V	
5.	(a)	Compare the logic families in terms of commonly	
		used specification parameters.	4
	(b)	With the help of a neat diagram, explain the working	
		of IIL NAND and NOR Gates.	8
	(c)	With the help of a neat diagram, explain the working	
		of a two-input TTL NAND gate with Totem-pole	
		output.	8
	(d)	With the help of a neat diagram, explain the working	
		of a two-input ECL OR/NOR gate.	8